Maxwell方程组

静电学

  • E(r)为静电场。由Coulomb定律,

        \[ dE(r) = \frac{\rho(r')(r - r')}{|r - r'|^3}dV', \]

    其中,\rho(r)为电荷密度。由线性叠加原理,

        \[ E(r) = \int \frac{\rho(r')(r - r')}{|r - r'|^3}dV'. \]

    \varphi(r) = \int \frac{\rho(r')}{|r - r'|}dV'为电势。那么,

        \[ E(r) = -\nabla\varphi(r). \]

  • 静电学的方程
    • E(r)的旋度(curl)为

          \[ curlE(r) = -curl\nabla\varphi(r) = 0. \]

    • E(r)的散度(div)为

          \[ divE(r) = -div\nabla\varphi(r) = -\Delta\varphi(r). \]

      注意到

          \[ \Delta\varphi(r) = \int \rho(r') \cdot [-4\pi\delta(r - r')]dV' = -4\pi\rho(r). \]

      因此,

          \[ divE(r) = 4\pi\rho(r). \]

静磁学

  • H(r)为静磁场。由Biot-Savart定律,

        \[ dH(r) = \frac 1c\frac{j(r') \times (r - r')}{|r - r'|^3}dV', \]

    其中,j(r)为电流密度,c为光速。由线性叠加原理,

        \[ H(r) = \int \frac 1c\frac{j(r') \times (r - r')}{|r - r'|^3}dV'. \]

    A(r) = \int \frac 1c\frac{j(r')}{|r - r'|}dV'为磁势。那么,

        \[ H(r) = curlA(r). \]

  • 由电荷守恒定律(与时间无关),

        \[ 0 = \int j(r) \cdot dS = \int divj(r)dV. \]

    因为积分区域任意,所以

        \[ divj(r) = 0. \]

  • 静磁学的方程
    • H(r)的散度(div)为

          \[ divH(r) = div\,curlA(r) = 0. \]

    • H(r)的旋度(curl)为

          \[ curlH(r) = curl\,curlA(r) = \nabla divA(r) - \Delta A(r). \]

      注意到

          \[ \Delta A(r) = \int \frac 1cj(r') \cdot [-4\pi\delta(r - r')]dV' = -\frac{4\pi}{c}j(r), \]

      以及由分部积分公式,

          \begin{equation*}\begin{split} divA(r) &= -\int \frac 1cj(r') \cdot \nabla'\frac{1}{|r - r'|}dV' \\ &= \int \frac 1cdiv'[j(r')] \cdot \frac{1}{|r - r'|}dV' \\ &= 0. \end{split}\end{equation*}

      这里,我们需要假设积分区域外j(r) = 0,从而分部积分的边界项消失。因此,

          \[ curlH(r) = \frac{4\pi}{c}j(r). \]

导出Maxwell方程组

  • E(r, t)H(r, t)分别为与时间有关的电场、磁场
  • (磁生电)由Faraday定律,

        \begin{equation*}\begin{split} 0 &= \int E(r, t) \cdot dl + \frac 1c\int \frac{\partial H(r, t)}{\partial t} \cdot dS \\ &= \int \bigg[curlE(r, t) + \frac 1c\frac{\partial H(r, t)}{\partial t}\bigg] \cdot dS. \end{split}\end{equation*}

    因为积分区域任意,所以

        \[ curlE(r, t) = -\frac 1c\frac{\partial H(r, t)}{\partial t}. \]

  • 由电荷守恒定律(与时间有关),

        \begin{equation*}\begin{split} 0 &= \int \frac{\partial\rho(r, t)}{\partial t}dV + \int j(r, t) \cdot dS \\ &= \int \bigg[\frac{\partial\rho(r, t)}{\partial t} + divj(r, t)\bigg]dV. \end{split}\end{equation*}

    因为积分区域任意,所以

        \[ \frac{\partial\rho(r, t)}{\partial t} + divj(r, t) = 0. \]

  • (电生磁)注意,div\,curlH(r, t) = 0必须成立。我们令

        \[ curlH(r, t) = \frac 1c\frac{\partial E(r, t)}{\partial t} + \frac{4\pi}{c}j(r, t), \]

    从而,

        \begin{equation*}\begin{split} div\,curlH(r, t) &= \frac{4\pi}{c}\bigg[\frac{1}{4\pi}\frac{\partial divE(r, t)}{\partial t} + divj(r, t)\bigg] \\ &= \frac{4\pi}{c}\bigg[\frac{\partial\rho(r, t)}{\partial t} + divj(r, t)\bigg] \\ &= 0. \end{split}\end{equation*}

  • 最终,Maxwell方程组为

        \begin{equation*}\begin{split} curlE(r, t) &= -\frac 1c\frac{\partial H(r, t)}{\partial t}, \\ curlH(r, t) &= \frac 1c\frac{\partial E(r, t)}{\partial t} + \frac{4\pi}{c}j(r, t), \\ divE(r, t) &= 4\pi\rho(r, t), \\ divH(r, t) &= 0. \end{split}\end{equation*}

电磁波

  • 如果\rho(r, t) = 0j(r, t) = 0,那么由Maxwell方程组,

        \[ \frac{1}{c^2}\frac{\partial^2E(r, t)}{\partial t^2} = -curl\,curlE(r, t) = \Delta E(r, t), \]

        \[ \frac{1}{c^2}\frac{\partial^2H(r, t)}{\partial t^2} = -curl\,curlH(r, t) = \Delta H(r, t). \]

  • 这是波动方程。因此,电磁场可以通过电磁波的形式传播,传播速度为光速