Hamilton方程

从Euler-Lagrange方程到Hamilton方程

  • 我们使用从切空间到局部中的Einstein求和约定
  • 在局部坐标系下,Euler-Lagrange方程为

        \[ \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot{q}^a} - \frac{\partial\mathcal{L}}{\partial q^a} = 0. \]

    \frac{d}{dt}进一步作用于\frac{\partial\mathcal{L}}{\partial\dot{q}^a},可得

        \[ \frac{\partial^2\mathcal{L}}{\partial\dot{q}^a\partial\dot{q}^b}\ddot{q}^b + \frac{\partial^2\mathcal{L}}{\partial\dot{q}^a\partial q^b}\dot{q}^b + \frac{\partial^2\mathcal{L}}{\partial\dot{q}^a\partial t} - \frac{\partial\mathcal{L}}{\partial q^a} = 0. \]

    如果\mathcal{L}关于\dot{q}的Hesse矩阵是可逆的,那么上面的方程是广义坐标q的二阶ODE,正如Newton方程是位置向量r的二阶ODE
  • 我们也可以将Euler-Lagrange方程转化为一阶ODE。令

        \[ p = (p_1, \ldots, p_n) = \bigg(\frac{\partial\mathcal{L}}{\partial \dot{q}^1}, \ldots, \frac{\partial\mathcal{L}}{\partial \dot{q}^n}\bigg), \]

    那么Euler-Lagrange方程变为

        \[ \dot{p_a} = \frac{\partial\mathcal{L}}{\partial q^a}. \]

  • 定义映射

        \[ \phi: (q, \dot{q}) \mapsto (q, p), \]

    Jacobi矩阵为

        \[ D\phi = \begin{bmatrix}I_n & 0 \\ B & A\end{bmatrix},\; A = \bigg(\frac{\partial^2\mathcal{L}}{\partial\dot{q}^a\partial\dot{q}^b}\bigg),\; B = \bigg(\frac{\partial^2\mathcal{L}}{\partial\dot{q}^a\partial q^b}\bigg). \]

    如果\mathcal{L}关于\dot{q}的Hesse矩阵是可逆的,那么\det(D\phi) = \det(A) \neq 0。由从切空间到局部中的逆映射定理,\phi在局部是可逆的,从而是一个坐标变换
  • \widetilde{\mathcal{L}}(q, p, t) = \mathcal{L}(q, \dot{q}(q, p), t)。那么,

        \begin{equation*}\begin{split} \frac{\partial\widetilde{\mathcal{L}}(q, p, t)}{\partial q^a} &= \frac{\partial\mathcal{L}}{\partial q^a} + p_b\frac{\partial\dot{q}^b}{\partial q^a}, \\ \frac{\partial\widetilde{\mathcal{L}}(q, p, t)}{\partial p_a} &= p_b\frac{\partial\dot{q}^b}{\partial p_a}. \end{split}\end{equation*}

  • 如果我们定义Hamiltonian为

        \[ \mathcal{H}(q, p, t) = p_b\dot{q}^b - \widetilde{\mathcal{L}}(q, p, t), \]

    那么我们可以得到Hamilton方程

        \begin{equation*}\begin{split} -\frac{\partial\mathcal{H}}{\partial q^a} &= -p_b\frac{\partial\dot{q}^b}{\partial q^a} + \frac{\partial\widetilde{\mathcal{L}}(q, p, t)}{\partial q^a} = \frac{\partial\mathcal{L}}{\partial q^a} = \dot{p}_a, \\ \frac{\partial\mathcal{H}}{\partial p_a} &= \delta_{ab}\dot{q}^b + p_b\frac{\partial\dot{q}^b}{\partial p_a} - \frac{\partial\widetilde{\mathcal{L}}(q, p, t)}{\partial p_a} = \dot{q}^a. \end{split}\end{equation*}

保守力场的Hamiltonian

  • 在保守力场中,广义坐标q为位置向量r,广义速度\dot{q}为速度v,并且Lagrangian为

        \[ \mathcal{L} = \frac 12mv^2 - V(r). \]

    由此可知,p = \frac{\partial\mathcal{L}}{\partial v} = mv为动量,并且Hamiltonian为总能量,

        \[ \mathcal{H} = p \cdot v - \mathcal{L} = \frac 12mv^2 + V(r). \]

  • 坐标变换为

        \[ \phi: (r, v) \mapsto (r, mv),\; \phi^{-1}: (r, p) \mapsto (r, p / m). \]

    我们称(r, v)位于坐标空间,(r, p)位于相空间。在相空间中,Lagrangian、Hamiltonian分别为

        \[ \mathcal{L} = \frac{|p|^2}{2m} - V(r),\; \mathcal{H} = \frac{|p|^2}{2m} + V(r). \]